George Mason University
Department of Civil, Environmental and Infrastructure Engineering

CEIE 641: Water Resources Engineering I
Fall 2013

INSTRUCTOR:
Dr. Celso Ferreira
Office location: Nguyen Engineering Building, Room 1411
Office Hours: Thursday 1:30 – 4:30 p.m. or by appointment
Email: cferrei3@gmu.edu
Phone number: 703 993 1782

Invited Instructor:
Dr. Joe Manous
Office location: Institute for Water Resources, US Army Corps of Engineers, Alexandria, VA
Office Hours: by appointment
Email: Joe.Manous@usace.army.mil
Phone number: (703) 428-7074

COURSE SCHEDULE
Lecture: R / 7:20 – 10:00 pm / Nguyen Engineering Building, Room 1108

WEB PAGE
Materials for this course are available on GMU Blackboard
https://mymasonportal.gmu.edu/webapps/portal/frameset.jsp

COURSE DESCRIPTION & PREREQUISITES
Introduction to the principles of hydrology and hydraulics and their application to the planning, design and management of modern water resources.
Prerequisite(s): Graduate standing in CEIE; CEIE 340 or equivalent. Prerequisite enforced by registration system.

COURSE RATIONALE
Welcome to the engineering of the water world! This class is the starting point to your graduate studies in water resources engineering. We will cover all the basic principles of water resources engineering and bring you up to speed to continue on your water resources engineering education.

LEARNING OUTCOMES
- Ability to apply knowledge of mathematics, science, and engineering.
• Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
• Ability to identify, formulate, and solve engineering problems.
• The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
• Recognition of the need for, and an ability to engage in life-long learning.
• Knowledge of contemporary issues.
• Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

COURSE OBJECTIVES
• Apply fundamental concepts (Fluid Dynamics) to practical applications of water resources engineering.
• Have a broader overview of the fundamental disciplines of water resources engineering.
• Apply the principles of conservation of mass, momentum and energy to solve water resources problems.
• Understand the concept of the hydrological cycle, its components, relations and importance.
• Understand basic principles of GIS applications to water resources and use GIS technology to solve water resources problems.
• Delineate watersheds using different methods (manual and automated) and determine its characteristics.
• Understand the concept of rainfall/runoff and apply the most common methods to calculate runoff for urban and rural watersheds.
• Basic understanding of extreme events statistics and its applications to hydrologic frequency analyses; to calculate rainfall intensity and return period for different locations.
• Design water resources engineering structures such as culverts and detention ponds;
• Understand the theory of open channel flow; identify flow regimes; hydraulic jumps; calculate velocity, flow and water elevation for open channel flows; and design systems of open channels.
• Understand the basic concepts of groundwater aquifers, basic ground water equations, flow under different soil types, wells, apply the basic equations for groundwater flow and be aware of the importance of groundwater reservoirs.
• Basic understanding of water law, floodplain management, water uses and economic and benefits analyses for water resources.
• Be prepared to continue on higher levels classes of hydrology, hydraulics, storm water and ground water.
• Have an understanding of global, regional and local water issues and water related natural disasters.

TEXTBOOK AND/OR RESOURCE MATERIALS

Required text book:

- Additional reading material will be suggested during the semester.
- Class notes and power point slides will be provided on black board.

Additional text books:
- Water Resources Engineering, by Ralph Wurbs and Wesley James, PHI, ISBN-10: 0130812935
- Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications, by Loucks, Daniel P.; van Beek, Eelco; Stedinger, Jery R.; Dijkman, Jozef P.M.; Villars, Monique T. UNESCO. Free online version at: http://ecommons.cornell.edu/handle/1813/2804

Software:
- We will rely on Geographic Information Systems (GIS) to perform spatial analysis and to support hydrologic and hydraulic modeling. We will use the ESRI computer software ArcGIS 10 (Student version DVD provided by instructor).
- We will use computer software developed by the Hydrologic Engineering Center (HEC) from the US Army Corps of Engineers (USACE) that are public available and free of cost. (http://www.hec.usace.army.mil/software/)

The listing of this sites and products does not imply any endorsement of the products by George Mason University.

The software is also available at the Volgenau School of Engineering (VSE) Labs. http://labs.ite.gmu.edu/

Equipment:
- Outdoor Rain Gauge (Tip: Buy a cheap one [less than $10]) Examples: http://www.amazon.com/Taylor-Precision-Clear-Vu-Gauge-Kitchen/dp/B00002N62K/ref=pd_sim_k_2 or
* You WILL need it for your homework.

Some related technical journals
- *Journal of Hydrologic Engineering (ASCE)*
- *Journal of Hydraulic Engineering (ASCE)*
- *Journal of Water Resources Planning and Management (ASCE)*
- *Journal of Hydrology*
- *Water Resources Research (AGU)*

GRADING POLICIES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework:</td>
<td>15%</td>
</tr>
<tr>
<td>Project:</td>
<td>80%</td>
</tr>
<tr>
<td>Class attendance and participation:</td>
<td>5%</td>
</tr>
</tbody>
</table>

Letter grades will be assigned according to:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>> 97</td>
</tr>
<tr>
<td>A</td>
<td>93 ~ 96</td>
</tr>
<tr>
<td>A-</td>
<td>90 ~ 92</td>
</tr>
<tr>
<td>B+</td>
<td>87 ~ 89</td>
</tr>
<tr>
<td>B</td>
<td>83 ~ 86</td>
</tr>
<tr>
<td>B-</td>
<td>80 ~ 82</td>
</tr>
<tr>
<td>C+</td>
<td>77 ~ 79</td>
</tr>
<tr>
<td>C</td>
<td>73 ~ 76</td>
</tr>
<tr>
<td>C-</td>
<td>70 ~ 72</td>
</tr>
<tr>
<td>D</td>
<td>60 ~ 69</td>
</tr>
<tr>
<td>F</td>
<td>< 60</td>
</tr>
</tbody>
</table>

Numeric grades will be rounded to the nearest integer. The instructor reserves the right to adjust letter grades, upward only, based on individual attendance and class participation.

Student responsibilities:
- Actively participate in the classes.
- Read carefully the class material.
- Approximately weekly/bi-weekly homework.
- Final project.
Homework:
Home work is due at the beginning of lecture, unless otherwise noted. Late homework will not be accepted. Work submitted for grading in this class must be written clearly and shows all analyses steps, equations, and calculations. Credit will be reduced if calculations are not logical and neatly presented.

Project:
Objective:
The objective of the final project is to identify a relevant topic related to a global, regional or local water resources issue, carry on research about this topic, synthetize it and present the research to the classroom. Please provide background, why is this important, problems it might cause, possible solutions and your impressions as civil engineering’s about the topic you selected. The project will be composed of three phases:

1) Title and abstract: maximum of 300 words describing your project. Reference on how to write an abstract http://www.asce.org/Audience/Authors,--Editors/Journals/General-Journal-Information/Abstract/
2) Written project: Please include a complete written report of your project. Make sure to include at a minimum an introduction, literature review, methods, results, discussion, conclusions, and references sections.
3) Oral presentation: Prepare a power point and present your work to your colleagues. Presentations durations will be define during the semester according to the number of students in the class room.

The grading policy is described below. Additional instructions on the oral presentation and topic selection will be provided during the semester.

Grades and due dates:
- Title and abstract (20%): October 10th
- Written project (40%): December 5th
- Oral presentation (40%): November 21st and December 5th

Participation:
Attendance is expected and will count towards your participation grade. Students are expected to actively participate in the classroom discussions and presentations.

COURSE TOPICS

This is a TENTATIVE schedule. The course schedule is subject to changes. Please always check on Blackboard for more updated information.

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>Home work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29-Aug</td>
<td>Introduction to water resources engineering &GIS and water resources</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>05-Sep</td>
<td>Hydrologic processes: Precipitation, evaporation</td>
<td>2</td>
</tr>
</tbody>
</table>
ADDITIONAL INFORMATION

Technology Policy

Regarding electronic devices (such as laptops, cell phones, etc.), please be respectful of your peers and your instructor and do not engage in activities that are unrelated to class. Such disruptions show a lack of professionalism and may affect your participation grade.

Honor System

The integrity of the University community is affected by the individual choices made by each of us. GMU has an Honor Code with clear guidelines regarding academic integrity. Three fundamental and rather simple principles to follow at all times are that: (1) all work submitted be your own; (2) when using the work or ideas of others, including fellow students, give full credit through accurate citations; and (3) if you are uncertain about the ground rules on a particular assignment, ask for clarification. No grade is important enough to justify academic misconduct. Plagiarism means using the exact words, opinions, or factual information from another person without giving the person credit. Writers give credit through accepted documentation styles, such as parenthetical citation, footnotes, or endnotes. Paraphrased material must also be cited, using MLA or APA format. A simple listing of books or articles is not sufficient. Plagiarism is the equivalent of intellectual robbery and cannot be tolerated in the academic setting. If you have any doubts about what constitutes plagiarism, please see me.

Americans with Disabilities Act (ADA) Policy Statement

If you have a documented learning disability or other condition that may affect academic performance you should: 1) make sure this documentation is on file with Office of Disability Services (SUB I, Rm. 4205; 993-2474; http://ods.gmu.edu) to determine the accommodations you need; and 2) talk with me to discuss your accommodation needs.

Diversity

George Mason University promotes a living and learning environment for outstanding growth and productivity among its students, faculty and staff. Through its curriculum, programs, policies, procedures, services and resources, Mason strives to maintain a quality environment for work, study and personal growth. An emphasis upon diversity and inclusion throughout the campus community is essential to
achieve these goals. Diversity is broadly defined to include such characteristics as, but not limited to, race, ethnicity, gender, religion, age, disability, and sexual orientation. Diversity also entails different viewpoints, philosophies, and perspectives. Attention to these aspects of diversity will help promote a culture of inclusion and belonging, and an environment where diverse opinions, backgrounds and practices have the opportunity to be voiced, heard and respected. The reflection of Mason’s commitment to diversity and inclusion goes beyond policies and procedures to focus on behavior at the individual, group and organizational level. The implementation of this commitment to diversity and inclusion is found in all settings, including individual work units and groups, student organizations and groups, and classroom settings; it is also found with the delivery of services and activities, including, but not limited to, curriculum, teaching, events, advising, research, service, and community outreach. Acknowledging that the attainment of diversity and inclusion are dynamic and continuous processes, and that the larger societal setting has an evolving socio-cultural understanding of diversity and inclusion, Mason seeks to continuously improve its environment. To this end, the University promotes continuous monitoring and self-assessment regarding diversity. The aim is to incorporate diversity and inclusion within the philosophies and actions of the individual, group and organization, and to make improvements as needed.

How to succeed in this course:

- Make sure you read the assigned text book chapter before the classes.
- Ask often and early. If something is not clear to you, let me know.

Your classmate name and email:

Name: ____________________________

Contact info: _____________________________